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Baysian Super-resolved Surface Reconstruction from multiple images

Abstract

Bayesian inference has been used successfully for

many problems where the aim is to infer the param-

eters of a model of interest. In this paper we for-

mulate the three dimensional reconstruction problem

as the problem of inferring the parameters of a sur-

face model from image data, and show how Bayesian

methods can be used to estimate the parameters of this

model given the image data. Thus we recover the three

dimensional description of the scene. This approach

also gives great flexibility. We can specify the geomet-

rical properties of the model to suit our purpose, and

can also use different models for how the surface re-

flects the light incident upon it. In common with other
Bayesian inference problems, the estimation method-

ology requires that we can simulate the data that would

have been recoded for any values of the model parame-

ters. In this application this means that if we have im-

age data we must be able to render the surface model.

However it also means that we can infer the parame-

ters of a model whose resolution can be chosen irre-

spective of the resolution of the images, and may be

super-resolved. We present results of the inference of

surface models from simulated aerial photographs for

the case of super-resolution, where many surface ele-

ments project into a single pixel in the low-resolution

images.

1 Introduction

Bayesian inference has proved to be the method of

choice for many inference problems enabling accurate

estimation of parameters of interest from noisy and

incomplete data, and also providing estimates of the

errors associated with the inferred parameters. The

general approach is illustrated in figure 1. The fig-

ure shows that synthetic observations of the model are

made using a computer simulation of the observation
process, and these are compared with the actual ob-
servations. The error between the actual and the sim-

ulated observations is used to adjust the parameters
of the model, to minimize the errors. The estimation

of the errors on the parameter estimates (or more gen-
erally, the estimation of the covariance matrix of the

parameters) means that the parameter estimates can

be updated when more observations become available.

In the application to the reconstruction of three
dimensional surfaces, the model is the parameterized

surface model and the measurement system is a com-

puter model of the image formation process.

The surface model is chosen to suit the desired ap-

plication. For example it could be a CAD model if the

data was images of machine parts, or a spline model if

the data came from more general man-made objects•

In the application we describe in this paper we are

interested in recovering planetary surfaces, and hence
we choose to describe the surface by a triangular mesh.

This is a very standard model in computer graphics,

but is little used in computer vision (a notable excep-

tion is [?] (zisserman)). There is also the flexibility

to specify the density of the mesh, which need not be

spatially constant.

The computer model of the image formation pro-

cess is the area of computer graphics known as render-

ing. A model of how light is reflected from the surface

is used, together with an abstraction of how the im-

age is formed, to synthesize the image that would have
been recorded from the current surface under the light-

ing conditions and camera position and orientation.

These light reflectance parameters are parameters of
the surface model that are to be inferred together with

the geometrical parameters. The theoretical exposi-
tion in this paper is valid for any parameterized re-
flection function. The results assume Lambertian re-

flection.

The formation of the synthetic image from the pa-

rameterized model and the lighting and camera pa-
rameters is discussed in more detail in section 3. Here

we just note that current rendering technology is un-

suitable for our purpose because it operates in image

space, and so the image formed has artifacts due to
the relative sizes of the projection of the surface el-

ements onto the image plane and the pixels. These

artifacts are noticeable along the edges of surface ele-

ments. Also, if the projections of the surface elements

in the pixel plane are very small, such as when we are

trying to infer a high resolution mesh from many low

resolution images, these artifacts dominate the 'stan-
dard' rendering process. The renderer that is required"

for this purpose is one that operates in object space,
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Figure 1: An outline of the Bayesian approach to sur-
face reconstruction

and in section 3 we briefly describe such a system. An

object-space renderer can also be made to compute

the derwatives of the pixel values with respect to the

surface model parameters. This is a crucial part of the

inference process, and is described in detail in section
3.1.

One of the major goals of this paper is to develop

Bayesian inference approach for 3D super-resolved
surface reconstruction when the resolution of inferred

surface mesh is higher than the spatial resolution of

input images. This also allows to achieve the image

super-resolution: synthetically produced images of the

super-resolved surface model can be at higher resolu-

tion that that of input data images.

1.1 Previous Work

Most previous work in the area of the estimation of

three dimensional surfaces from image data has used

one of two main approaches, shape from shading (more

generally, 'shape from X') and shape from stereo.

In shape from shading [?] the image gradients are

used, and, using the assumption of orthographic pro-

jection, are relatedto the surfacederivatives.Using

assume_i boundary conditionsthe surfacederivatives

can be integratedtoproduce an estimateofthe surface

heights(more strictly,the distancefrom the camera to

the points on the surface).

Shape from stereo[?]uses correspondence matches

between features in the images to give the disparity

between these features.Finding thesecorrespondence

matches is aided by using the epipolar constraint [?].

If the camera geometry is known then the disparity

can be directly related to the distance of the feature

from the camera, and the feature can be located in

space. The discrete points corresponding to the fea-

tures matched in the images are then joined to form a
representation of the surface.

A drawback of shape from stereo is that the density

of points in the recovered surface is unknown a-priori,
and is dependent on the number and density of lea-

tures found in the images. A feature detector giving

few features gives a very coarse surface representation;

one that gives very many is likely to produce features

that are hard to match between images.

Shape from shading has the drawback that the spa-

tial density of the recovered surface is fixed at the

image density. It is also difficult to apply if the re-
flectance properties are spatially varying. Both of

these approaches have difficulty incorporating new ob-
servations of the surface that become available after

the initial estimate is made.

Bayesian approach was used for image super-

resolution in the number of papers beginning from [6].

In the previous work [7] input images were taken from

roughly the same direction under the similar lighten-

ing conditions. In this work the surface model is essen-
tially represented as 2D texture map. In our case of

fully 3D surface reconstruction this restriction is lifted:

low resolution input images as well as high-resolution

output images can correspond to a very different val-

ues of registration parameters.

2 A Bayesian Framework

In this paper we consider the following surface

model. The geometry is represented by a triangular
mesh. We consider the case of Lambertian surfaces

and store surface reflection properties in the vector
of albedo values associated with the vertices of the

triangular mesh. We will assume known the camera

parameters and the parameters of the lighting. The
estimation of these parameters will be considered in

a forthcoming paper using the same Bayesian frame-
work.

Thus we represent the surface model by the pair of

vectors [h, p]. The components of these vectors cor-

respond to the height and albedo values defined on a

regular grid of points

[hp]-- {(zi,pl), i=£(q_+p_')) q,p=0,1,...
(1)

where t elementary grid length, _, _ are an orthonor-

mal pair of unit vectors in the (x,y) plane and i in-

dexes the position in the grid. The pair of vectors

of heights and albedos represent a full vector for the
surface model

u = [hp]. (2)

To estimate the values of h, p from image data, we

apply Bayes theorem which gives

p(h, plIl ... IF) oc p(It ... IFIh, p)p(h, p)

where// (f = 1,..., F) is the image data. This states
that the posterior distribution of the heights and the



albedosis proportionalto the likelihood- theprob-
ability of observingthedatagiventhe heightsand
albedos- multipliedby thepriordistributiononthe
heightsandalbedos.

Thepriordistributionisassumedto beGaussian

p(h,p) c_ exp (-_uE-l ur) ,

0]0 '

(3)

where the vector of the surface model parameters u is

defined in (2). The inverse covariance matrix is con-

structed to enforce the smoothing constraint on local

variations of heights and albedos. We penalize the

integral over the surface of the square of the surface

curvature c(x, y) = h==2+ hvU2 + 2h2=y, and similarly for
albedos. We approximate the partial derivatives in

c(x, y) using finite differences of the height (albedo)
values. Then coefficients of Q form a 5 x 5 template r

and result from summing c(x, y) over the surface.

Qq+n,p+m = Fq,p, q,p = -2, 2. (4)
Tt,_ " " " '

For brevity we do not provide here an explicit values

of coefficients Fq,p. Two metaparameters ah and ap in
equation (3) control the expected values of the surface-

averaged curvatures for heights and albedos.

This prior is placed directly over the height vari-

ables, h, but albedos are only defined over the range

[0 - 1]. Because of this we put in equation (3) the
Gaussian prior for the albedos over transformed vari-

ables, where

p --',. log(p'/(1 - p_)), u = [hp'] (5)

In the vector of model parameters u values of p are

replaced by values of p'.

For the likelihood we make the usual assumption
that the differences between the observed data and the

data synthesized from the model have a zero mean,
Gaussian distribution, and also assume that the im-

ages I! comprising the data are conditionally inde-

pendent. This gives

( _!'P(J'f P -- "f P(h' P))2 )p(Ii... Is'[h, p) ¢x exp 2a_

where ./! p(h, p) denotes the pixel intensities in the im-

age f synthesized from the model, a_ is the noise vari-
ance and the summation is over the pixels (p) and over

all images (f) used for the inference.

Consider the negative log-posterior.

L(h,p)(x _'_q'P(IIp-IIp(h'P))_ +uE-Lu T (6)

where the model parameters vector is defined in (2).

This is a nonlinear function of h, p and the MAP esti-

mate is that value of h, p which minimizes L(h, p).

In the case of images with no shadows or visible

occlusions which we consider here, the log-posterior

is in general unimodal and gradient methods can be

applied for minimizing L(h,p). We linearize ](h,p)

about the current estimate, ho, Po

i(h, p) = i(he, po)+D (u-uo), D _= Oz--'_' Op-_l

(7)
where D is the matrix of derivatives evaluated at

he, P0. Then minimization of L(h, p) is replaced by

minimization of the quadratic form:

L'=lx_i.x-bx, x= u-uo,

DD r
A = + (s)

b = (I - I(ho, po)) D + E_l uo.

Here A is the Hessian matrix of the quadratic form

and vector b is a gradient of a likelihood L computed
at current estimate. We search for the minimum in x

using a conjugate-gradient method. At the minimum

we update the current estimate, u_ -- uo + x, recom-

pute/_ and D, and repeat the minimization procedure
iteratively until l the current estimate uk approaches

a global minimum of L(h, p).
Thus to find the MAP estimate requires that we can

render the image and compute the derivatives for any
values of the surface model parameters. We discuss

this computation in some detail in the next sections.
Here it is sufficient to note that while forming .r us-

ing only object space computation (see section 3) is

computationally expensive, we can compute D at the
same time for little additional computation. Also the

derivative matrix is sparse with the number of nonzero

entries a few times the number of model parameters.

This makes the process described above a practical

one. Convergence is also accelerated by using a multi-

grid approach.

At convergence we compute a new inverse covari-
ance matrix, (E-l) ' = E -1 + DDT/a_. This is then

used as a prior inverse covariance matrix when new

image data of the same surface is obtained, enabling
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Figure 2: Geometry of the triangular facet, illumina-

tion direction and viewing direction

a recursiveupdate and integrationof data recorded

at differenttimes. The posteriorinversecovariance

matrix givesinformation about the uncertaintyofthe
estimated surface.

3 Formation of the image and the
derivative matrix.

The task of forming an image, /=, given a surface

description, h,p, and camera and illumination pa-

rameters is the area of computer graphics known as

rendering[2]. Most current rendering technology is fo-

cused on producing images which are visually appeal-

ing, and producing them very quickly. As discussed

in the introduction, this results in the use of image-

space algorithms, with the fundamental assumption

that each triangle making up the surface, when pro-

jected onto the image plane, is much larger than a

pLxel. This makes reasonable the assumption that
%

any given pixels receives light from only one triangle,

but does produce images with artifacts at the triangle

edges. This approach alsoproduces inaccurateimages

ifthe trianglesproject into areas much smallerthan

a pixelon the image plane,as the pixelwillthen be

colored with a value coming from just one of the tri-

angles.

Clearly this approach is not suitable for high-

resolution3D surfacereconstructionfrom multipleim-

ages. The trianglesin a high-resolutionsurfacemay

projectonto an area much smallerthan a singlepixel

in the image plane (sub-pixelresolution).Therefore,

as discussed in the introduction,for our system we

implemented a renderer for triangularmeshes which

performs allcomputation in objectspace. At present

we neglect the blurring effectdue to diffractionand

due to the roleof pixelboundaries in the CCD array.

Then the lightfrom a triangleas itisprojected intoa

pixelcontributesto the brightnessof the pixelwith a

weight factorproportionalto the fractionof the area

of the trianglewhich projectsinto that pixel. This

produces perfectlyanti-aliasedimages and allowsan

image of any resolutionto be produced from a mesh

of arbitrarydensity,as requiredwhen the system per-

forming the surfaceinferencemay have no controlover

the image data gathering.

Our renderercomputes brightness/:pofa pixelp in

the image as a sum of contributionsfrom individual

surfacetrianglesA whose projectionsinto the image

plane overlap,at leastpartially,with the pixelp.

i.= (9)
A

Here _z_ is a radiation flux reflected from the triangu-

lar facet Z_ and received by the camera, and f_ is the
fraction of the flux that falls onto a given pixel p in

the image plane. In the case of Lambertian surfaces

and single spectral band 4_ is given by the expression

q'z, =pE(a _) cosa v cos_ OAl], (10)

E(_ s)= pA(Z s cosc_s +Za).

Af_ = S/d 2.

Here p isan average albedo of the triangularfacet.

Orientationangles c_s and c,"are defined in figure2.

E(t_ s) is the total radiation flux incident on the trian-

gular facet with area _4. This flux is modeled as a sum

of two terms. The first term corresponds to direct ra-

diation with intensity Z' from the light source at infin-

ity (commonly the sun). The second term corresponds

to ambient light with intensity Z =. The parameter 8

inequation.(I0)isthe angle between the camera axis

and the dewing direction(thevectorfrom the surface

to the camera); _ isthe lensfallofffactor.Ai'/in (10)

isthe spatialangle subtended by the camera which

isdetermined by the area of the lens S and the dis-

tance d from the centroidofthe triangularfacettothe

camera.

We identify the triangular facet A by the set of 3

indices (io, i,, i2) from the vector of heights (1) that

determines the vertices of the triangle in a counter-

clockwise direction (see figure 2). In the r.h.s of equa-

tion (10) we have omitted for brevity those indices
from all the quantities associated with individual tri-

angles. _he average value of albedo for triangle in (10)

is computed based on the components of the albedo

vector p corresponding to the triangle indices

1
pA --P',,i,,i,= _(P'o + Pit + Pi2)' (Ii)



We note that using average albedo (11) in the ex-

pression for @A is an approximation which is justified

when the albedo values vary smoothly between the

neighboring vertices of a grid.

The area A of the triangle and the orientation an-

gles in (10) can be calculated in terms of the vertices

of the triangle Pl (see figure 2) as follows:

_. _' = cosa*, ft. _.v = cosaV, (12)

1_1 _ Vi°'ix × Vit'12
2A , vii -- Pj - Pl

Here 6 is a unit normal to the triangular facet and

vectors of the edges of the triangle vii are shown in

figure 2.
We use a standard pinhole camera model with no

distortion in which coordinates of a 3D world point

P -- (z, y, z) are first rotated with the rotation ma-

trix 1_ and translated by the vector T into camera

coordinates, yielding Pc = (xc, Yc, zc)

Pc -- I_P + T. (13)

(1_ and T are expressed in terms of the camera regis-

tration parameters [?]; we do not give them explicitly

here). After the 3D transformation given in (13) point
Pc in the camera coordinate system is transformed us-

ing a perspective projection into the 2D image point

= (_, _) using a focal length f and aspect ratio a.

# ---z-_ 0 1 Yc "

We use 2D image projections of the triangular ver-

tices Pl to compute the area fraction factors f_ for

surface triangles (cf. Eq. (9))

Ap°ly_°n (15)
, f_= ,_A "

Here ,4Lx is the area of the projected triangle on the

image plane and "4polygon is the area of the polygon
resulting from the intersection of the projected trian-

gle and boundary of the pixel p (see figure 3).

Thus, our renderering algorithm does the following:

1. Transform the coordinates of the vertices of the

surface model, Pro, into 2D image coordinates.

(Maintaining copies of the points in both the

world and image coordinate systems.)

2. For each triangle & in the surface model.

• Compute a total radiation flux @A for every
triangle, according to equation (10), using
world coordinates.

• Compute the area fractions f_ for all pix-

els p that are overlapped by the projection

of the triangle by finding the geometrical in-
tersection of A with those pixels .

• Update the pixel intensities [p based on

equation (9) with the contribution from the
current &.

3.1 Computation of the derivative ma-
trix.

The inference of the surface model parameters de-

pends on the ability to compute the derivatives of the
observations with respect to the model parameters. In

this section we obtain the derivatives of the pixel in-

tensities with respect to the surface heights and albe-

dos, and make some comments about efficient imple-
mentation.

According to equation (9), the intensity/_p of a pixel

p depends on the subset of the surface parameters,

heights and albedos, that are associated with the tri-

angles whose projections overlap the pixel area. It

is seen from Eq. (10) that when the surface heights

are fixed the radiation flux from a given triangle _,_

depends linearly on the average albedos of the trian-

gle, pa. Then using Eqs. (9) and (5) the derivatives

of a pixel intensity/_p with respect to logarithmically

transformed albedo values p_ can be written in the

following form:

OIp 0_ (16)
Op'---;'_----pA(1 - Pzx) fP 0p_'

where the form of the coefficient O¢_a/Opa immedi-

ately follows from Eq. (10). Note also that the deriva-

tive value in (16) is scaled with the area fraction factor

for a given triangle.

3.1.1 Derivatives with respect to the heights

of the vertices of the triangles

In our object-space renderer, which is based on pixel-

triangle geometrical intersection in the image plane,

the pixel intensity derivatives with respect to surface

heights have two distinct contributions

Variation of the surface height hm gives rise to varia-

tions in the normals of the triangles associated with

this height (in a general triangular mesh, on average 6

triangles are associated with each height) and this pro-
duces the derivatives of the total radiations fluxes @A
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Figure 3: The intersection of the projection of a trian-

gular surface element (io, il, i2) onto the pixel plane
with the pixel boundaries. Bold lines corresponds to

the edges of the polygon resulting from the intersec-

tion. Dashed lines correspond to the new positions of

the triangle edges when point Plo is displaced on b'P

to the camera from those triangles.This isthe first

term inequation (17).Also,height variationgivesrise

to the displacement of the corresponding point which

isthe projection of this vertex on the image plane.

This resultsin changes to the areas of the triangles

and polygons with edges containingthispoint (seefig-

ure 3). This produces the derivativesof the fractions

f:, the second term in equation 17.

When the triangleiscompletely insidethe pixelits

area fractionf: = 1 and according to (17) itscontri-

bution to the pixelintensityderivativeequals to the

derivativeof the corresponding radiationflux,@@/@zl.

The fluxderivativecan be computed directlyfrom the

coordinetes of the triangleverticesand the camera

position using Eqs. (10) and (12).For the surfacetri-

angle with vertices (PIo, Pit, Pis) the flux derivative

with respect to the z component of the vertex Pto
equals

0¢ 1 S
= ;p(Pi_ - Pit) x i .g

_5
(18)

where

g = Zo(i_ cosa, + i, cosa, - ficos% cosa_) + Z_i_

and i is a unit normal in the vertical direction.

When the triangle is projected into more than one

pixel than the height derivatives of the projected area

fraction in (17) have to be computed for every pixel

intersecting with the triangle. This can be done using
the following chain rule arguments.

As mentioned above, when the z component of the

vertex Plo in the 3D world coordinate system is vary-

ing by 5z, the corresponding 2D point 15io in the image

projection plane is displaced by _ 15 as shown in fig-

ure 3. The corresponding point displacement deriva-

tive equals:

015 _ 1 ( a f Rl3 + 2 R33 ) (19)i)z zc / R23 + ._ R33 '

Here we have dropped the vertex index; R,j are the

components of the rotation matrix R in (13) and zc is

the z component of the point P in the sensor coordi-

nate system, given by equation (13).
Displacement 6 15 of the triangle vertex 15 gives rise

to the change 6Aa in the area of the projected triangle

and also the change _Apolygon in the polygon area. It
then follows from equation(15) that

Of: 1 (0_i-poly_on 0fi, A '_ 015io

= \ o15,0 oT,o] (20)

Here the point displacement derivative 015io/Zio is

given in (19).

Thus, the task of computing the derivative of the

area fraction (20) is reduced to the computation of

OAz_/cgPi o and CgApolygon/CgPi o. Note that the rater-
section of a triangle and a pixel for a rectangular pixel

boundary can, in general, be a polygon with 3, 4, 5 or

6 edges with various possible forms. However the algo-

rithm for computing the polygon area derivatives that

we have developed is general, and does not depend on
a particular polygon configuration. The main idea of

the algorithm can be described as follows. Consider,

as an example, the polygon shown in figure 3 which

is a part of the projected surface triangle with indices
io, ix,i2. We are interested in the derivative of the

polygon area with respect to the point 151o that con-

nects two edges of the projected triangle, (Pi2, Pto)

and (Plo, Pi_). These triangular edges contain seg-
ments (I, J) and (K, L) that are sides of the corre-

sponding polygon. It can be seen from figure 3 that

when the point 151o is displaced by 5151o the change in

the polygon area is given by the sum of two terms

5Apolygon = 5AI,j + 5AK,L

These terms are equal to the areas spanned by the

two corresponding segments taken with appropriate
signs. Therefore the polygon area derivative with the

respect to the triangle vertex 15_ is represented as a



sumof the two"segmentarea"derivativesforthe2
segmentsadjacentto a givenvertex.Usingstraight-
forwardgeometricalargumentsonecancalculatethe
areas5Ax.jand5AK,,.to first orderin thedisplace-
ment5151o. Thenthepolygonareaderivativecanbe
expresseddirectlyin termsofthetriangleverticesand
theendpointsof thepolygonsegments:I, J, K andL

(cf. figure 3).

The details of the polygon area derivative compu-

tation will be presented elsewhere. Here we provide a

result for the simplest particular case, i.e. the deriva-

tive of the area of the projected triangle

0.'In =_b.(p, _pi, ) b= [ 0 1 ] (21)015io ' -1 0 "

The unit antisymetrix matrix _ performs a -r/2 ro-

tation in the image plane.

We note that the computation of the derivative ma-

trix and the surface rendering essentially involves the

same set of variables (triangle and polygon vertices,

areas, etc). Therefore both computations can be done
at the same time.

4 Adaptiveness and Super-resolution

aspects
The correct choice of the smoothness prior (3) is

very substantial for inferring the surfaces that have

regions with high curvature (edges). It is also of espe-

cial importance in the case of surface super-resolution
where the spatial resolution of individual pixels is

greater than the size of a surface triangle.

Clearly that the values of metaparameters at, and

ap should be controlled by the relative sizes of surface

triangles e and spatial resolution of individual pixels

_p. One needs at least 2 low-resolution images to infer

heights and albedos at the same time. In this case ah

and ap should be chosen in such a way to ensure the
smoothness of a surface patches on a scale ,,, p. For

larger number of low-resolution images the inferred

surface may have a smoothness scale smaller than p.

This corresponds to a smaller values of ah and ap.
We note however that the smoothness prior remains

very important even in the "over-constrained" case

where the number of low-resolution images is relatively
large and the total number of pixels in all images per

hight and albedo value is > 1. The reason is that

the spatial structure of the derivative values can be

very irregular in this regime and smoothness prior es-
sentially plays a role of regularizer. Indeed, one can

show based on the analysis from the previous section

that the magnitude of the derivatives ]OIp/Ozll can be

much larger for the surface vertices whose triangles in-

tersect the pixei boundary than for the vertices that

are projected fully inside of the pixel along with all tri-

angles surrounding them. When the number of trian-

gles per pixel increases (typically > 10) this can give

rise to a strong spatial modulation of the components

bi of the gradient vector and also matrix elements of
DD T (8). In general, pixel boundaries from different

images are not allined and therefore even for several
images the spatial pattern of bt DD T and can be very

irregular.

Regularization is achieved when correlations in-

duced by the smoothness prior, Z -x, would be of the

same order as correlations induced by observations in
the matrix DD v. Therefore every time we compute

derivative matrix D we readjust the metaparameter

an so that

' ' ( )/N_xg 2, (22)F0,0 ae/an _ Tr n DDT

where the traces of DD T are taken with respect to

height and albedo variables; N is the number of ver-
tices in a grid, g is the size of individual triangles

(equation 1). Value of ap is readjusted in a similar

way.
Finally to achieve the local adaptiveness of the prior

we place the curvature penalty on the deviation from
the current surface estimate, u - u_, but not on the
estimate itself. In this case the second term in the

expression the the gradient b in (8) should be omitted.

5 Results

As a test example we used a triangulated surface

which heights correspond to DEM of the Dackwater

region (Nevada). We prepared surface albedos syn-

thetically to fit the existing Landsat image data of the

same region. The surface is of dimension 297 x 297

heights and the same number of albedos. Sixteen

low-resolution images of the surface were produced us-

ing simple perspective sensor model (14), with differ-

ing lighting and camera orientations. Each images is
128 x 128 pixels. We used these synthetic images as

the input data images I. Figure 4 (left) shows a por-

tion of one of the input images of the size (40 x40)

pixels.

Starting from a mesh with all zero heights and all
albedos set to 0.5, the conjugate gradient scheme de-
scribed above was used to infer the surface shown in

figure. The surface is of the same dimension as the

original surface. Not that this is a dense triangulation

- when projected into the pixel grid of figure 4 many

triangles fall into one pixel. Thus we infer a super-

resolved surface - a pixel lying on a mountain ridges
does not imply a planar region in the inferred surface,

rather, we infer a surface where highly curved regions



Figure4: Left: a regionof low-resolution input im-

age, 96 × 74 pixels (left). Right: high-resolution recon-

structed image, 960x 740 pixels

may project into a single pixel. Figure 4 (right) shows
a high-resolution image synthesized from the same re-

gion of the inferred surface as that corresponding to
original data image at the left. This image was ren-

dered at 10 times the resolution of the original data

image. Comparison of left and right images figure 4
highlights the super-resolution aspect of our approach.

Because we know the original surface the error

maps can be computed for both heights and albedos

to judge the quality of inference. Note the vertical

scales compared with figure . The reconstruction is

accurate, with most errors being in the regions of high
curvature.

6 C(_nclusions and future extensions

We have developed a very general framework for the
inference of general surface geometry and reflectance

models from image data, where the model choice is de-

termined by the physical properties of the surface we
wish to infer. We have demonstrated that for the case

of a triangulated surface and Lambertian reflectance

the parameters of a surface model, namely the heights

and albedos, can be inferred from a set of image data.
We have developed a framework that allows easy in-
clusion of future data observed from the same sur-

face, and easy incorporation of data from other sensing
modalities.

In this paper we assumed the registration parame-

ters of input data images to be know in advance. In

principle one can use the Bayesian approach devel-

oped above to infer the registration parameters of the

data images along with surface heights and albedos.
Such inference will include as an essential element the

derivatives of the intensities of synthetic images with

respect to registration parameters.
Another limitation of the current work is related

to the absence of shadows and visible occlusions in

input images. Future developments also include the

addition of the ability to compute correctly both im-

age and its derivatives when this limitation is lifted.

Here we only note that the derivatives in the presence

of shadows/occlusions are nonlocal as the points lay-

ing on the surface far apart can become correlated.

This nonlocal derivatives are very informative as to

the shape of the surface.

Among the other extensions are more realistic re-

flection functions, blurring and modeling of different

surface topologies. Limits to the accuracy of the
superresolved surface reconstruction will also be ex-

plored.
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